Superconvergence of functional approximation methods for integral equations
نویسندگان
چکیده
منابع مشابه
Superconvergence of functional approximation methods for integral equations
In this work, a functional approximation method for calculating the linear functional of the solution of second-kind Fredholm integral equations is developed. When the method is applied to the collocation method or to the multi-projection method, it generates approximations which exhibit superconvergence. © 2008 Elsevier Ltd. All rights reserved.
متن کاملSuperconvergence analysis of multistep collocation method for delay functional integral equations
In this paper, we will present a review of the multistep collocation method for Delay Volterra Integral Equations (DVIEs) from [1] and then, we study the superconvergence analysis of the multistep collocation method for DVIEs. Some numerical examples are given to confirm our theoretical results.
متن کاملsuperconvergence analysis of multistep collocation method for delay functional integral equations
in this paper, we will present a review of the multistep collocation method for delay volterra integral equations (dvies) from [1] and then, we study the superconvergence analysis of the multistep collocation method for dvies. some numerical examples are given to confirm our theoretical results.
متن کاملConvergence of an Approach for Solving Fredholm Functional Integral Equations
In this work, we give a product Nyström method for solving a Fredholm functional integral equation (FIE) of the second kind. With this method solving FIE reduce to solving an algebraic system of equations. Then we use some theorems to prove the existence and uniqueness of the system. Finally we investigate the convergence of the method.
متن کاملNumerical approximation for integral equations
A numerical algorithm, based on a decomposition technique, is presented for solving a class of nonlinear integral equations. The scheme is shown to be highly accurate, and only few terms are required to obtain accurate computable solutions. 1. Introduction. Adomian polynomial algorithm has been extensively used to solve linear and nonlinear problems arising in many interesting applications (see...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2009
ISSN: 0893-9659
DOI: 10.1016/j.aml.2008.06.007